Be a #StraumannLegend in your own practice

The magic behind the new implant – the new tapered standard

Roxolid® groundbreaking material

Reducing invasiveness with smaller implants

  • More treatment options
  • Higher patient acceptance
  • Clinically validated performance

Apically tapered

Excellent primary stability even in compromised bone situations

  • Full-depth thread to apex for early engagement
  • Self-cutting in underprepared sites
  • Protecting anatomical structure with round tip

SLActive® surface maximizing predictability

Predictability at its best

  • Safer and faster treatment in 3-4 weeks for all indications3-11
  • Higher treatment predictability in challenging protocols12-17
  • Beyond healthy patients: Broadening treatment potential18

Discover more


Science & Clinical evidence

Clinical review


Clinical case report


Step by step instructions



“When replacing lateral incisors in patients with agenesia the Straumann® Bone Level Tapered Implants help me to treat cases where the access of apical alveolar bone is crucial due to the proximity of adjacent teeth”
Dr Lars-Åke Johansson, Specialist in Periodontology and Prosthodontic rehabilitation, Sweden
“Lateralization of the inferior alveolar nerve offers patients the possibility of obtaining a fixed prosthesis in severely atrophic mandibles. Where bone quantity as well as bone quality are insufficient the Straumann® Bone Level Tapered Implants and the Roxolid® material provide the needed stability and strength to treat these complex cases.”
Søren Aksel Christian Krarup, Maxillofacial surgeon, Denmark

1 Benic GI et al. ‘Titanium-zirconium narrow-diameter versus titanium regular-diameter implants for anterior and premolar single crowns: 1-year results of a randomized controlled clinical study.’ Journal of Clinical Periodontology 2013; [Epub ahead of print] 2 Freiberger P, Al-Nawas B. ‘Non-interventional Study on Success and Survival of TiZr Implants.’ EAO 2012 Copenhagen; 305 Posters – Implant Therapy Outcomes, Surgical Aspects. 3 Rupp F et al. : Enhancing surface free energy and hydrophilicity through chemical modification of micro­structured titanium implant surfaces. Journal of Biomedical Materials Research A, 76(2):323-334, 2006. 4 DeWild M : Superhydrophilic SLActive® implants.Straumann document 151.52, 2005 5 Maniura K : Laboratory for Materials – Biology Interactions Empa, St. Gallen, Switzerland Protein and blood adsorption on Ti and TiZr implants as a model for osseointegration. EAO 22nd Annual Scientific Meeting, October 17 – 19 2013, Dublin 6 Schwarz F et al. : Bone regeneration in dehiscence-type defects at non-submerged and submerged chemically modified (SLActive®) and conventional SLA® titanium implants: an immunohistochemical study in dogs. J Clin.Periodontol. 35.1 (2008): 64– 75. 7 Rausch-fan X et al. : Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dental Materials 2008 Jan;24(1):102-10. Epub 2007 Apr 27. 8 Schwarz F et al. : Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA® titanium implants: Preliminary results of a pilot study in dogs. Clinical Oral Implants Research, 11(4): 481-488, 2007. 9 Lang, NP et al. : Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants.Res 22.4 (2011): 349–56. 10 Raghavendra S et al. : Int. J. Oral Maxillofac. Implants. 2005 May–Jun;20(3):425–31. 11 Oates TW et al. : Enhanced implant stability with a chemically modified SLA® surface: a randomized pilot study. Int. J. Oral Maxillofac. Implants. 2007;22(5):755–760. 12 Schwarz F et al. : Bone regeneration in dehiscence-type defects at chemically modified (SLActive®) and conventional SLA® titanium implants: a pilot study in dogs. J Clin.Periodontol. 34.1 (2007): 78–86 13 Lai HC et al. : Bone apposition around two different sandblasted, large-grit and acid-etched implant surfaces at sites with coronal circumferential defects: An experimental study in dogs. Clin. Oral Impl. Res. 2009;20(3):247–53. 14 Buser D et al. : Stability of Contour Augmentation and Esthetic Outcomes of Implant-Supported Single Crowns in the Esthetic Zone: 3-Year Result of a Prospective Study With Early Implant Placement Post Extraction. J Periodontol. 2011 March; 82(3): 342-9. 15 Buser D et al. : Long-term Stability of Early Implant Placement with Contour Augmentation. J Dent Res. 2013 Dec;92(12 Suppl):176S-82S. 16 Nicolau P et al. : Immediate and early loading of Straumann® SLActive implants: A Five Year Follow-up. Presented at the 19th Annual Scientific Meeting of the European Association of Osseointegration – 6-9 October 2010, Glasgow 17 Some product may not be available in all countries. Please check with your local sales representative for details.